AD=-A058 280 CORNELL UNIV ITHACA N Y DEPT OF COMPUTER SCIENCE F/6 12/1 -
A NOTE ON RABIN'S NEAREST-NEIGHBOR ALGORITHM.(U)

1978 S FORTUNEr J HOPCROFT N00014-16-C-0018
UNCLASSIFIED U-CSD-TR-?B'S“D
i |IIIII|IIIII|IIII|||IIII||IIIII|IIIII|IIIII|IIIII|IIII||IIIII|IIIII|IIII|

h
END

DATE
FILMED

I0-78 i

DOC

|0 e 2
— Y™

e g =
T

b

23 s, nee

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-3

ADAOS8280

AD No.——

0 FILE copy

-
.v-

LEVEL =

A NOTE ON
RABIN'S NEAREST-NEIGHBOR ALGORITHM
by

Steve Fortune+
John Hopcroft+

Department of Computer Science
Cornell University
Ithaca, N.Y. 14853

1.

Research was supported under grant number ONR N00014-76-C-0018.

DISTRIBUTION STATEMENT A

Approved for public releczs:
\ Distribution Unlimited

R T P

A NOTE ON RABIN'S NEAREST-NEIGHBOR ALGORITHM

by
Steve Fortune
John Hopcroft

Department of Computer Science
Cornell University
Ithaca, N.Y. 14853

Abstract

Rabin has proposed a probabilistic algorithm for finding
the closest pair of a set of points in Edclidean space. His
algorithm is asymptotically linear whereas the best of the
known deterministic algorithms take order nlogn time. We

show that at least part of the speedup is due to the model

rather than the probabilistic nature of the algorithm.

Keywords

probabilistic algorithms, nearest neighbor, hashing

s Wilte Section x
boe Butf Saction =
UNANHOUNCED

b scisniil o
Dot QI wnd/or SPEGIAL

JUSTIFICATION

..

DISTRIBUTION /AVAILABILITY GODES

e

1. Introduction

One notion that has received some attention recently is
that of a probabilistic algorithm. An algorithm is probabilistic
if at.certain steps it chooses a number randomly to determine
the next step and at all other steps it is deterministic. The
expected running time of such an algorithm on a given input is
obtained by averaging over all possible random choices of the
algorithm on that input. The running time of the algorithm as
a whole can be measured either by averaging the expected running
time over all inputs or by taking the worst case of the expected
running time. In [l] the former analysis is used; in [4] and
[6] the latter analysis is used.

Rabin [4] has proposed a probabilistic algorithm for finding
the closest pair of a set of points in Euclidean space. The
running time of his algorithm using the worst-case expected-time
measure is linear. This compares with time O(n ;og n) for the
best of the known deterministic algorithms for this problem [2]
(51 (7).

Rabin's algorithm works by randomly choosing a subset of
the points and recursively using the algorithm to find the dis-

tance between the nearest neighbors of the subset. Rabin is

. able to show that, with very high probability, the distance be-

tween the nearest neighbors of the subset is a very good approx-
imation to the distance between nearest neighbors in the whole
set. Using this approximation the distance between the nearest
neighbor in the whole set can be found in expected linear time.
The algorithm's use of randomness in choosing the subset is

crucial.

PSSR e R ——

Rabin's algorithm also assumes constant time arithmetic
operations. In particular, he assumes that a special operation,
described below, which is similar to hashing can be performed in
constant expected time. It follows from [3] that the special
operation can indeed be implemented by a prohabilistic algorithm
to run in constant expected time given that evaluating a hash
function takes constant time.

The fast algorithms in [1], [4], and [6] all have the pro-
perty that for some sequence of random choices an incorrect
answer could result. Rabin's algorithm is apparently the only
known example other than hashing of an error-free probabilistic
algorithm which runs faster than the deterministic equivalent.

In this paper we present an algorithm to find the nearest
neighbor which runs in time O(n loglog n). The algorithm does
not make any random choices; however it does assume that the
special operation uses only constant time. The conclusion we
reach is that most of the speedup of Rabin's algorithm is due
to the hashing, and not to the probabilistic nature of the basic
algorithm. It would be interesting to find examples of prob-
abilistic algorithms that are faster than their deterministic
counterparts and for which the speed does not come from the

capability to hash.

ahaila, : " s

E
|
|

2. The Algorithm

We describe the special operation, call it FINDBUCKET, in
more detail. We are given a set of real numbers, say with minimum

¥
value Bin*

and an interval size s. We wish to partition the set
into blocks such that each block is nonempty and contains precisely
the reals falling in an interval [rmin+ns, rmin+(n+l)s), for some
integer n 2 0. To do this we have an array of linked lists, which we
will call buckets. Each bucket is to hold the reals falling in one
interval. The number of buckets is as large as the nuﬁber of reals.
FINDBUCKET, given the arguments a real number and the interval size
(and implicitly the array) returns the index of the bucket into which
the real is to be stored. FINDBUCKET returns the same index for all
reals falling in the same interval; it is guaranteed to return different
indices for reals falling in different intervals. We assume no other
relationship between the real and the index returned by FINDBUCKET.
Rabin suggests that FINDBUCKET be implemented by dividing the real
by the interval size, truncating the quotient to an integer, and
hashing on the integer.

The algorithm for nearest neighbor is completely general;
hqwe§er for simplicity we will assume the points are real numbers
appearing on the line. The extension to higher dimensioned spaces

should be obvious.

4 -

The algorithm is based on the following observation: suppose
we can find an interval size r such that at most one point falls
within each interval and there are two nonempty adjacent intervals.
Then if we place points into buckets using an interval size of
2r, the closest pair of points must either be within the same
interval or in adjacent intervals. The total number of points
which can be within one interval at size 2r and the number of
adjacent intervals are constants depending only on the dimension
of the space. Hence for each point only a constant number of
other points need be examined. The buckets which contain points
in adjacent intervals can be found using FINDBUCKET. Thus,
given the interval size r the total amount of work to find the
closest pair is linear in the number of points. We write a
recursive procedure FINDINT to find the interval size r.

FINDINT is called with a set of n points as parameter. It
selects an initial interval size by dividing the difference
between the maximum and minimum point by n. The main loop of
FINDINT is to remove a point from the set and use FINDBUCKET
to place it into a bucket. This continues until some bucket
has v/n points, at which time FINDINT is called recursively
for each bucket with two or more points. The interval size

is set to the minimum of the interval sizes returned by the

‘recursive calls. The points already placed into buckets

are then temporarily discarded and the main loop is restarted
with the first point which has not yet been inserted into a

bucket. This process continues until each point has been in-
serted into a bucket once.

-

When the main loop has been executed for every point, and
a tentative interval size found, the entire set of points is
placed into buckets at the current interval size. FINDINT is
then called recursively on all buckets containing two or more
points; the output of the algorithm is the minimum of the size
returned by all recursive calls. A pidgin ALGOL description

of FINDINT is given below.
Input: A set S of n points.

Output: An interval size such that no two points fall in
the same interval and such that there are two adjacent nonempty

intervals.

1. PROCEDURE FINDINT(S):

2. intervalsize < (max(S) - min(S)) / n;

3. T « S;

4. WHILE T is not empty DO

5. WHILE all buckets have fewer than v/n points and

T is not empty DO

6. remove a point r from T;

i B <« FINDBUCKET(intervalsize, r);

8. insert r into bucket B;

9. END;

10. FOR each bucket B containing more than one element DO

ik, intervalsize <« min(intervalsize, FINDINT(B))

12. END;
13. empty all buckets; |
14. END;
15. FOR each r in S DO !
16. B < FINDBUCKET (intervalsize, r);

17. insert r into bucket B;

18. END;
19. FOR each bucket B containing more than one element DO
20. intervalsize < min(intervalsize, FINDINT(B));
21. END; '

22. RETURN (intervalsize);
23. END

~B=

To analyze the running time of the algorithm, first note
that exclusive of recursive calls, FINDINT takes time cn, for
some c¢. Recursive calls of size less than 256 take only a
constant amount of time; we will assume that the cost of such
calls are absorbed into the constant c. We show by induction
that for n2256, FINDINT takes total time dn loglogn, for some

d.

Let us call the process of one iteration of the WHILE
loop of lines 5-9, i.e. until some bucket gets vn points, a
level. Clearly, there are at most vn levels. Let us call
the interval size at line 15 the tentative interval size.
It is possible that more than one point can fall into a bucket
at the tentative interval size. This can happen if two points
would fall into the same bucket but were processed at different
levels. However, each such bucket can contain at most one
point from each level. Hence the number of pointsAper bucket

at line 19 is bounded by the number of levels, i.e. /H.

From the above discussion it is clear that FINDINT
never solves a récursive problem of size bigger than vn.
If all subproblems were disjoint, it would be easy to show
that the running time was O(n loglogn). However it is pos-
sible that a point might appear in a recursive call at both
lines 11 and 20. Hence a more complicated analysis is

necessary.

-7 =

For the following, let us also say that the processing
of lines 19 through 22 is a level by itself. We wish to
count the number of intervals which are guaranteed to be
nonempty at the interval size at the end of each level. This

will enable us to bound the total work involved in the recursive calls.

Suppose the first recursive call at some level has b
points. After the call, the points are all separated by the
new interval size. But since all the points were in one
interval at the start of the level, after the call there are
b-1 new nonempty intervals. Suppose the second call at the
level has c points. It is possible that these points have
already been partially separated by the first call. But since
all c points were in one interval at the start of the
level, after the second call there are a total of (b-1l) + (c-1)
new nonempty intervals. Continuing in this way for all recursive

calls at a level and all levels, we get that there are at least

k
f X (bi-l) nonempty intervals, where k is the number of recursive
i=1
1 calls and bi.the size of the ith recursive call. As at the

end of the algorithm there are n nonempty intervals, we have

k
(1) L (b,-1)sn
i=1 *
The amount of work involved in the recursive calls is
bounded by
k
(2) z dbi loglog b,
i=1 g

(Note that we have already absorbed the cost of recursive

calls of size less than 256 into géneral overhead. But (2)
is certainly an upper bound on the amount of work necessary.)
We wish to maximize (2) subject to (1), and the constraint
that 2sb, < /n for each i.

We claim (2) is maximized when each bi except possibly
one is|/n]. To see this first note that if r2s>2

(r+l) loglog (r+l) + (s-1) loglog (s-1) = r loglog r + s loglog s

hence (2) is augmented by increasing a bi by 1 at the expense
of decreasing a smaller bj by 1. Second, if bi=2' for some
i, since 2 loglog 2 = 0, (2) is augmented by deleting bi and
adding 1 to some other bj' (1} is then still satisfied.

In this case (all but possibly one bi=/g),

ks[— ox —7 <vh + 4 for sufficiently largé n.
Lvn J-1

So we have

k .
I db, loglog b, < d /n ¢ {loglog vn)(v/n + 4)
i=1
< dn loglogn - dn + 4dv/n (loglogn-1)

< dn loglogn - %n

where the last line holds as n2256. The total work involved
is thus bounded by cn + dn loglogn - %F which is less than

dnloglogn if d>2c.

3. Acknowledgement

The authors wish to thank the referee for his careful reading

of the manuscript and his helpful comments.

(1]

(2]

(3]

(41

[5]

[6]

(7]

Angluin, D. and L.G. Valiant. "Fast Probabilistic
Algorithms for Hamiltonian Circuits and Matchings",
Proc. of the Minth Annual ACM Symposium on the Theory
of Computing (1977), pp. 30-41.

Bentley, J.L. and M.I. Shamos. "Divide-and-Conquer
in Multidimensional Space", Proc. of the Eighth Annual

ACM Symposium on Theory of Computing (1976), pp. 220-230.

Carter, J.L. and M.N. Wegman. "Universal Classes of .
Hash Functions", Proc. of the Ninth Annual ACM Symposium

on Theory of Computing (1977), pp. 106-112.

Rabin, M. "Probabilistic Algorithms", appearing in
Algorithms and Complexity (1976), Academic Press,
N.Y., N.¥., Jd. Traub, Ed.

Shamos, M.I. "Geometric Complexity", Proc. of the
Seventh Annual ACM Symposium on Theory of Computing,
(1975), pp. 224-233.

Solovay, R: and V. Strassen. "Fast Monte-Carlo Test
for Primality", SIAM Journal on Computing Vol. 6,1
(1977) pp. 84-85. s

Yuval, G. "Finding Nearest Neighbours", Information
Processing Letters, Vol. 5,3 (1976), pp. 63-65.

e

W

Secunty Classificarion

Security classification of tithe, body of absteact and indexin annatation sust he entered whoen the averall coport oo cia

DOCUMENT CONTROL DATA - R & D j

e (

1 OMIGINATING AC U1t Ty (Corparate author)

Cornell University

> v
Computer Science Department

Lo, REF O

SCCUKITY CLASLIMICA 110

2b. GHOUP

Ithaca, NY 14853

3 KLPORT TITLE

ZL A Note on Rabin's Nearest-Neighbor Algorithm'\ “
o

, last nume,

4 DL . and, inclusiv » dates)
@ %chnlcal M;:Z .)
o dillc inided,

L AUTHORISIPHTY

NO. OF HEFS

7a. TOTAL KO. O

6. REPORT DATE :,") 5 2
o~rn-xc‘_f>n GRAN P A T 9a ORIGINATOR
NPPP1L-76- C—m18 x Wau e cs D._ TI@
et

EPORT

b PROJECT NO.

B

this report)
none

d.

9. OTHER RKEPORT NOUS) (Any other numbers that may be assigned

15. DISTRIBUTION STATEMENT

Distribution is unlimited

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

13. ABSTRACT

abin has proposed a probabilistic algorithm for finding the closest
pair of a set of points in Euclidean space. His algorithm is asymptotically
.linear whe the best of the known deterministic algorithms take order nlogn
time. ’W€—§§§§~;EE? at least part of the speedup is due to the model rather
than the probabilistic nature of the algorithm |

Y

N2 1L R f S

DD fomm 1473 (PAGE 1)

S/N 0101-807-6811 Security Classilication

SN 4 D 5 el i

A-D140N

¢« Securnity Classification

-

LI A LiNY B Linwk C
KEY WORDS —————
ROLE wTY ROLE wrY HOL L wT

probabilistic algorithms

nearest neighbor

hashing

=

: fORM . R
D 1 NOV ‘31473 (UAC'\)
S/K 0101-807-6321 Sccurity Classification A-3140)

